ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Optimization of a series of 2,4-diaminopyridines as neuropeptide Y Y1 receptor antagonists with reduced hERG activity

Minoru Kameda ^a, Kensuke Kobayashi ^a, Hirokatsu Ito ^a, Hiroshi Miyazoe ^a, Toshiaki Tsujino ^a, Chisato Nakama ^a, Hiroshi Kawamoto ^a, Makoto Ando ^a, Sayaka Ito ^b, Tomoki Suzuki ^b, Tetsuya Kanno ^b, Takeshi Tanaka ^c, Yoshio Tahara ^c, Takeshi Tani ^d, Sachiko Tanaka ^d, Shigeru Tokita ^b, Nagaaki Sato ^{a,*}

- ^a Department of Medicinal Chemistry, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
- ^b Department of Metabolic Disorder, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd. Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
- ^cDepartment of Pharmacology, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
- Department of Drug Metabolism, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd. Okubo 3, Tsukuba, Ibaraki 300-2611, Japan

ARTICLE INFO

Article history: Received 10 April 2009 Revised 19 May 2009 Accepted 20 May 2009 Available online 24 May 2009

Keywords:
NPY
Y1 Receptor
Antagonist
Anti-obesity
Food intake inhibition
2,4-Diaminopyridine derivatives

ABSTRACT

The synthesis and evaluation of a series of 2,4-diaminopyridine-based neuropeptide Y Y1 (NPY Y1) receptor antagonists are described. Compound **1** was previously reported by our laboratory to be a potent and selective Y1 antagonist; however, **1** was also found to have potent hERG inhibitory activity. The main focus of this communication is structure-activity relationship development aimed at eliminating the hERG activity of **1**. This resulted in the identification of compound **3d** as a potent and selective NPY Y1 antagonist with reduced hERG liability.

© 2009 Elsevier Ltd. All rights reserved.

Neuropeptide Y (NPY) is a 36-amino acid peptide widely distributed in the central nervous system and peripherals. 1-3 NPY has been implicated in the central regulation of feeding behavior and energy homeostasis.^{4,5} Chronic administration of NPY into the brain results in body weight gain with hyperphagia, reduced energy expenditure, and increased lipogenic activity in the liver and adipose tissue. 5,6 In addition, NPY-deficient ob/ob mice are less obese and have reduced food intake compared with ob/ob mice.⁷ Five distinct NPY receptor subtypes have been characterized (Y1, Y2, Y4, Y5 and y6).8 From pharmacological data, the Y1 receptor is considered to be a major feeding receptor; 8,9 therefore antagonism of the Y1 receptor might have considerable therapeutic benefits in treating obesity. Over the past decade, significant effort has been devoted to this matter, and a number of potent Y1 antagonists have been identified and evaluated by pharmaceutical companies for their potential as anti-obesity agents.¹⁰

Previously, we reported a series of 2,4-diaminopyridine-based NPY Y1 antagonists.¹¹ Compound **1** (Fig. 1) inhibits food intake after intraperitoneal administration in rodents. These effects were shown to be Y1 specific.^{11a} Although a promising lead class was

identified, further evaluation revealed that compound **1** has potent inhibitory activity ($IC_{50} = 36$ nM) for I_{kr} potassium channel hERG (human Ether-a-go-go Related Gene). Accordingly, we focused our modification efforts on identifying hERG attenuated potent Y1 antagonists by modifying this promising 2,4-diaminopyridine series. Although compound **1** is potent and shows Y1-specific antiobesity effects, it was thought that only limited modifications could be made due to its large molecular weight (M_W , 572) and high lipophilicity ($\log D_{7.4} > 4$). Therefore, 2,4-diaminopyridine derivatives in our compound library were re-evaluated to find those with reduced molecular weight, lipophilicity and hERG activity. Compound **2a** was identified as a good starting candidate with appreciably potent Y1 activity and reduced hERG activity, and with a lower molecular weight and decreased lipophilicity compared to **1** (Fig. 1). This Letter is focused on SAR development aimed at eliminating the hERG activity of **2a**.

2,4-Diaminopyridine-based Y1 receptor antagonists **2–4** were prepared according to the general synthesis illustrated in Scheme 1. Bromination of chelidamic acid (**5**) followed by substitution with morpholine afforded the morpholine intermediate **6**. After esterification of **6**, the corresponding two symmetrical ester groups were differentiated by half-reduction using sodium borohydride in the presence of calcium chloride to give **7**. The

^{*} Corresponding author. Tel.: +81 29 877 2004; fax: +81 29 877 2029. E-mail address: nagaaki_sato@merck.com (N. Sato).

$$\begin{array}{c} \text{S} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{H} \\ \text{O} \\ \text{O} \\ \text{N} \\ \text{$$

Figure 1. Structures of compounds 1 and 2a.

Scheme 1. Synthesis of 2,4-diaminopyridine derivatives **2**–**4.** Reagents and conditions: (a) (i) P_2O_5 , n-Bu₄NBr, toluene, 130 °C (87%); (ii) morpholine, 130 °C (51%); (b) (i) concd H_2SO_4 , EtOH, reflux (95%); (ii) NaBH₄, CaCl₂, EtOH, 0–10 °C (69%); (c) DHP, p-TsOH, CHCl₃, rt; (d) (i) 1 N aqueous NaOH, MeOH, 40 °C; (iii) DPPA, Et₃N, 1,4-dioxane, rt; (iii) t-BuOH, 1,4-dioxane, reflux (60% from **7**); (e) PPTS, EtOH, 40 °C (99%); (f) (i) SO₃Py, DMSO, Et₃N, rt; (ii) **18**, NaH, THF, 0 °C (71%); (iii) H_2 , Pd/C, MeOH, rt (75%); (g) (i) MsCl, Et₃N, AcOEt, 0 °C; (ii) ArSH, K_2CO_3 , DMF, rt (90–96%); (h) NaH, **20**, THF, 0 °C to rt (55%); (i) (i) R^1X , NaH, DMF, rt; (ii) TFA, CHCl₃, rt (40–93%).

hydroxyl group of 7 was protected as its tetrahydropyranyl (THP) ether. The ester 8 was hydrolyzed to the corresponding carboxylic acid, which was treated with diphenylphosphoryl azide followed by thermal rearrangement in the presence of tert-butylalcohol to yield tert-butoxycarbonyl (Boc)-protected aminopyridine 9. The THP group was removed using pyridinium p-toluenesulfonate to furnish the alcohol intermediate 10. The hydroxyl group of 10 was oxidized to the corresponding aldehyde, which was subjected to the Horner-Emmons reaction with diethyl phosphonate 18 and subsequently hydrogenated in the presence of palladium on carbon to furnish 11. Alternatively, the alcohol 10 was mesylated and displaced by the desired five-membered heterocyclic thiol in the presence of potassium carbonate to give thioether 12. Regarding the ether derivatives, the alcohol 10 was coupled with 2-chlorooxazole 20 in the presence of sodium hydride to provide 13. Alkylation of the Boc-protected amine of 11-13 followed by deprotection of the Boc group with trifluoroacetic acid afforded target compounds **2–4**. Synthesis of diethyl phosphonate **18** is described in Scheme 2. The starting *N*-Boc alanine (**14**) was converted to the corresponding Weinreb amide and treated with ethyl magnesium bromide to afford α -aminoketone **15**. Swapping of the Boc with an acetyl group was followed by cyclization under acidic conditions to afford the 2-methyloxazole **17**. The 2-methyl group of **17** was lithiated by lithium diisopropylamide, followed by treatment with diethyl chlorophosphonate to furnish phosphonate **18**. Preparation of 2-chlorooxazole **20** is illustrated in Scheme 3. The reaction of acetoin (**19**) with potassium cyanate under acidic conditions, followed by chlorination with phosphorus oxychloride, afforded **20**.

A series of 2,4-diaminopyridine compounds was tested in a [125I]PYY binding assay using CHO (NFAT-bla) cell membranes expressing human recombinant Y1 receptors. ¹⁴ Inhibitory activity for hERG potassium channel was evaluated using the [35S]

Scheme 2. Synthesis of diethyl phosphonate 18. Reagents and conditions: (a) (i) MeNH(OMe)·HCl, WSC, HOBt, Et₃N, CHCl₃, 0 °C to rt; (ii) EtMgBr, THF, 0 °C to rt (88%); (b) (i) 4 N HCl/AcOEt, 0 °C; (ii) AcCl, Et₃N, CHCl₃, 0 °C to rt (58%); (c) concd H₂SO₄, 100 °C (90%); (d) (i) n-Buli, i-Pr₂NH, THF, -78 °C; (ii) ClPO(OEt)₂, THF, -78 °C to rt (65%).

Scheme 3. Synthesis of 2-chlorooxazole **20.** Reagents and conditions: (a) (i) KCNO, concd HCl, DMF, $120\,^{\circ}$ C (27%); (ii) POCl₃, pyridine, $120\,^{\circ}$ C (57%).

 $N-[(4R)-17-[(2R)-6-cyano-1,2,3,4,-tetrahydro-2-naphthalenyl]-3,4-dihydro-4-hydroxyspiro[2H-1-benzopyran-2,4'-piperidin]-6-yl] methanesulfonamide ([<math>^{35}$ S]MK-499) binding assay to assess cardiac QT prolongation liability. 15

The effects of substituents on the 2-amino group were initially investigated (Table 1). Replacement of the ethyl group of 2a with substituted methyl groups as in 2b-e displayed Y1 affinity and hERG inhibition comparable to 2a. Introduction of an electron-withdrawing cyanomethyl group, as in 2f, resulted in significantly reduced hERG binding affinity while retaining Y1 activity. The calculated pK_a value¹⁶ of 2f is significantly lower than those of 2a-e, while their $\log D$ values¹⁷ are not significantly different.¹⁸ At this point, we hypothesized that reduction of basicity might be a favorable strategy for attenuating hERG binding affinity. Consequently, we focused on exploring electron-withdrawing substituents, specifically targeting derivatives with reduced basicity. The cyanoethyl and ester derivatives (2g and 2h) have higher pK_a values

Table 1 SAR of compounds $\mathbf{2a} - \mathbf{j}$, variation of the R^1 group

Compound	R ¹	Y1 binding IC ₅₀ ^{a,b} (nM)	hERG IC ₅₀ ^{a,c} (μM)	Log D _{7.4} ^d	Calculated pK _a e
2a	No.	16	0.40	2.2	9.8
2b	Me	32	0.83	1.7	9.8
2c	72	9.0	0.48	2.5	9.8
2d	22	25	0.54	2.4	9.6
2e	OMe	13	0.90	1.9	9.3
2f	Y N	21	4.3	2.4	7.9
2g	N Y	22	1.6	2.0	9.0
2h	OEt O	15	0.91	2.8	8.6
2i	20	320	7.0	2.3	6.7
2j	F F	4.3	1.6	3.5	8.3

^a The values represent the mean for $n \ge 2$.

^b [¹²⁵I]PYY binding assay using CHO (NFAT-bla) cell membranes expressing human recombinant Y1 receptors.

 $^{^{\}rm c}$ Inhibition of [35 S]MK-499 binding to hERG K $^{+}$ channel in HEK293 cells.

d Octanol–water distribution coefficient at pH 7.4; see Ref. 17.

^e See Ref. 16 for details of the calculation and software.

than **2f**. As anticipated, the hERG activities of **2g** and **2h** were more potent than that of **2f**. The acetyl derivative **2i**, which has an order of magnitude lower pK_a value than **2f**, showed improved hERG activity. Unfortunately, compound **2i** displayed a significant loss of Y1 activity. Although introduction of an electron-withdrawing trifluoroethyl group, as in **2j**, was not effective in reducing basicity and hERG activity, noticeably improved Y1 activity was observed. From this SAR study, the cyanomethyl substitution was identified to be the most suitable for the 2-amino moiety.

Next, the left-hand portion of the molecule was modified using compound 2f as a template (Table 2). Replacement of the ethylene linkage with a thiomethylene linkage as in 3a showed retained Y1 potency and a further reduction in pK_a , which led to substantial attenuation of hERG affinity. The dimethyloxazole derivative 3b displayed negligible hERG inhibitory activity, although its Y1 activity was decreased fourfold. Surprisingly, replacement of the thioether linkage with an ether linker as in 4 resulted in a complete loss of Y1 activity. Replacement of the oxazole ring of 3b with a substituted imidazole ring as in 3c showed improved Y1 activity, while negligible hERG activity was retained. The thiazole derivative 3d was more potent than the parent 2f and displayed negligible hERG activity. Com-

pound **3d** showed potent antagonistic activity in a [35 S]GTP γ S binding assay (IC $_{50}$ = 45 nM). In addition, **3d** showed good selectivity over other NPY receptor subtypes (Y2, Y4, Y5; IC $_{50}$ > 10 μ M). Unit in the contraction of the contraction o

Compound 3d was evaluated in vivo. Compound 3d is a significant substrate for mouse P-gp, so brain penetration by 3d in mice is limited by P-gp mediated efflux. However, 3d is a weak or negligible human P-gp substrate.^{21,22} We therefore used P-gp-deficient mice to evaluate 3d. Compared with wild-type mice, this mouse model is considered to more accurately predict drug action in humans. Accordingly, P-gp-deficient mdr1a (-/-) mice was utilized in the present study.²³ Intraperitoneal administration was selected to achieve required exposure for the present in vivo study since low oral bioavailability associated with low metabolic stability is an issue of this series. After intraperitoneal administration of compound **3d** at 30 mg/kg, the brain-to-plasma ratio was 0.9 in mdr1a (-/-) CF-1 mice (Table 3). In contrast, the brain-to-plasma ratio of 3d in C57BL/6J mice was only 0.27, which clearly suggests that Pgp mediated efflux has a considerable influence on brain penetration of **3d**. Compound **3d** was tested in a starvation-induced food intake model using mdr1a(-/-) CF-1 mice.²⁴ After intraperitoneal administration at 30 mg/kg, compound 3d exhibited significant

Table 2
SAR of compounds 2f, 3a-d, and 4

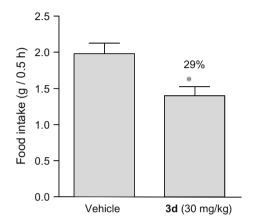
Compound	R^2	Y1 binding IC ₅₀ ^{a,b} (nM)	hERG $IC_{50}^{a,c}(\mu M)$	$\log D_{7.4}^{$	Calculated pKae
2f	N gas	21	4.3	2.4	7.9
3a	O S gas	21	8.3	2.6	6.9
3b	O S gs	70	>10	2.0	6.9
4	O O gs	>1000	NT ^f	2.1	6.7
3с	N S co	38	>10	1.0	7.1
3d	S S S S S S S S S S S S S S S S S S S	15	>10	2.4	7.0

The values represent the mean for $n \ge 2$.

b [1251]PYY binding assay using CHO (NFAT-bla) cell membranes expressing human recombinant Y1 receptors.

^c Inhibition of [³⁵S]MK-499 binding to hERG K⁺ channel in HEK293 cells.

d Octanol-water distribution coefficient at pH 7.4; see Ref. 17.


^e See Ref. 16 for details of the calculation and software.

f NT: not tested.

Table 3 Brain penetrability of **3d** in mdr1a (-/-) CF-1 and C57BL/6J mice^a

	Conce	ntration	Ratio	
	Plasma (µM)	Brain (nmol/g)	Brain/plasma	
mdr1a (-/-) CF-1	5.2 ± 1.7	4.7 ± 2.4	0.9 ± 0.24	
C57BL/6J	3.4 ± 0.5	0.9 ± 0.2	0.27 ± 0.01	

^a The values represent the means \pm SD for n = 3. The concentrations were measured 30 min after 30 mg/kg intraperitoneal administration.

Figure 2. Effect of **3d** on starvation-induced food intake in mdr1a (-/-) CF-1 mice. Values are means \pm SE for $n \ge 7$. P < 0.05 compared with the vehicle control.

suppression of food intake compared with the vehicle-treated group in this feeding model (Fig. 2).

In summary, we have designed a series of 2,4-diaminopyridine derivatives which have potent NPY Y1 antagonistic activity. The major focus of this study was the elimination of hERG activity from lead compound **2a**. A potent and selective derivative, **3d**, was identified which demonstrates suitable brain exposure and food intake inhibition in P-gp deficient mdr1a(-/-) CF-1 mice. Further evaluation of this class of compounds is currently underway.

Acknowledgments

The authors thank Hiroaki Suwa for measurement of $\log D_{7.4}$ values and Mioko Hirayama for the hERG binding assay.

References and notes

- 1. Tatemoto, K.; Carlquist, M.; Mutt, V. Nature 1982, 296, 659.
- Odonohue, T. L.; Chronwall, B. M.; Pruss, R. M.; Mezey, E.; Kiss, J. Z.; Eiden, L. E.; Massari, V. J.; Tessel, R. E.; Pickel, V. M.; Dimaggio, D. A.; Hotchkiss, A. J.; Crowley, W. R.; ZukowskaGrojec, Z. Peptides 1985, 6, 755.
- 3. Tatemoto, K.; Mann, M. J.; Shimizu, M. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 1174.
- 4. Stanley, B. G.; Leibowitz, S. F. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 3940.
- Stanley, B. G.; Magdalin, W.; Seirafi, A.; Nguyen, M. M.; Leibowitz, S. F. Peptides 1992, 13, 581.
- Zarjevski, N.; Cusin, I.; Vettor, R.; RohnerJeanrenaud, F.; Jeanrenaud, B. Endocrinology 1993, 133, 1753.
- 7. Erickson, J. C.; Hollopeter, G.; Palmiter, R. D. Science 1996, 274, 1704.

- 8. Blomqvist, A. G.; Herzog, H. Trends Neurosci. 1997, 20, 294.
- Eva, C.; Serra, M.; Mele, P.; Panzica, G.; Oberto, A. Front. Neuroendocrinol. 2006, 27, 308.
- For recent reviews: (a) Ishihara, A.; Moriya, M.; MacNeil, D. J.; Fukami, T.; Kanatani, A. Expert Opin. Ther. Pat. 2006, 16, 1701; (b) MacNeil, D. J. Curr. Top. Med. Chem. 2007, 7, 1721.
- (a) Kanatani, A.; Hata, M.; Mashiko, S.; Ishihara, A.; Okamoto, O.; Haga, Y.; Ohe, T.; Kanno, T.; Murai, N.; Ishii, Y.; Fukuroda, T.; Fukami, T.; Ihara, M. Mol. Pharmacol. 2001, 59, 501; (b) Fukami, T.; Mase, T.; Tsuchiya, Y.; Kanatani, A.; Fukuroda, T. PCT Int. Appl. WO 9734873.; (c) Sato, N.; Shibata, T.; Jitsuoka, M.; Ohno, T.; Takahashi, T.; Hirohashi, T.; Kanno, T.; Iwaasa, H.; Kanatani, A.; Fukami, T. Bioorg. Med. Chem. Lett. 2004, 14, 1761.
- 12. Fermini, B.; Fossa, A. A. Nat. Rev. Drug Discovery 2003, 2, 439.
- 13. Roden, D. M. N. Engl. J. Med. **2004**, 350, 1013.
- 14. Inhibitory effects of compounds on [1251]PYY binding to membranes overexpressing human NPY Y1 receptors were examined using a minor modification of the method described in Ref. 11a. In brief, the membranes were incubated in 0.2 ml of 20 mM HEPES buffer (pH 7.4), containing 0.1% bacitracin, 1 mM phenylmethylsulfonyl fluoride (PMSF), 0.5% BSA and Hank's balanced salt solution (HBSS) in the presence of various concentrations of the test compound with [1251]PYY (25 pM) at 25 °C for 120 min. Following three washes, the membrane-bound radioactivity was measured using a TopCount™ microplate scintillation counter (Packard, Meriden, CT). Non-specific binding was determined in the presence of an excess amount of cold porcine PYY (1 µM)
- Butcher, J. W.; Claremon, D. A.; Connolly, T. M.; Dean, D. C.; Karczewski, J.; Koblan, K. S.; Kostura, M. J.; Liverton, N. J.; Melillo, D. G. PCT Int. Appl. WO 2002005860.
- pK_a values were calculated using ACD/Labs pK_a database, ver. 11.0 (2008) (Advanced Chemistry Development Inc. http://www.acdlabs.com).
- Dohta, Y.; Yamashita, T.; Horiike, S.; Nakamura, T.; Fukami, T. Anal. Chem. 2007, 79, 8312.
- The literature suggests that a decrease in lipophilicity is effective for reducing hERG activity. See: (a) Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49, 5029; (b) Fraley, M. E.; Arrington, K. L.; Buser, C. A.; Ciecko, P. A.; Coll, K. E.; Fernandes, C.; Hartman, G. D.; Hoffman, W. F.; Lynch, J. J.; McFall, R. C.; Rickert, K.; Singh, R.; Smith, S.; Thomas, K. A.; Wong, B. K. Bioorg. Med. Chem. Lett. 2004, 14, 351.
- 19. Inhibitory effects of compounds on NPY-induced [35S]GTPγS binding to human NPY Y1 receptors were examined using a SPA method in a 96-well plate as described in Ref. 11a. In brief, 1 mg wheatgerm agglutinin (WGA)-SPA beads and 1.1 mg CHO cell membranes overexpressing human NYP Y1 receptors were mixed in 200 µl of GTPγS binding assay buffer (20 mM HEPES, pH 7.4, 10 mM MgCl₂, 100 mM NaCl and 10 µM GDP, 0.2% BSA, 10 µM cold GTPγS and 200 pM [35S]GTPγS) in each well of an OptiPlate*-96 plate. A submaximal (EC₇₀) concentration of human NPY was added with increasing concentration of test compound. The reaction mixtures were incubated with gentle shaking for 3 h at 25 °C, then centrifuged for 10 min at 1000 rpm. Finally, the plates were read in a TopCount* microplate scintillation counter (Packard, Meriden, CT). See: Dautzenberg, F. M.; Higelin, J.; Pflieger, P.; Neldhart, W.; Guba, W. Neuropharmacology 2005, 48, 1043.
- Kanatani, A.; Ishihara, A.; Iwaasa, H.; Nakamura, K.; Okamoto, O.; Hidaka, M.;
 Ito, J.; Fukuroda, T.; MacNeil, D. J.; Van der Ploeg, L. H. T.; Ishii, Y.; Okabe, T.;
 Fukami, T.; Ihara, M. Biochem. Biophys. Res. Commun. 2000, 272, 169.
- 21. The transcellular transport ratios (B-to-A/A-to-B ratio) for **3d** were 1.5 and 6.5 in human and mouse P-gp transfected cells, respectively. In this P-gp transport assay, a compound with a B-to-A/A-to-B ratio above 3 is considered to be a P-gp substrate. See Ref. 22 for experimental details.
- Yamazaki, M.; Neway, W. E.; Ohe, T.; Chen, I.; Rowe, J. F.; Hochman, J. H.; Chiba, M.; Lin, J. H. J. Pharmacol. Exp. Ther. 2001, 296, 723.
 (a) Lankas, G. R.; Cartwright, M. E.; Umbenhauer, D. Toxicol. Appl. Pharmacol.
- (a) Lankas, G. R.; Cartwright, M. E.; Umbenhauer, D. Toxicol. Appl. Pharmacol. 1997, 143, 357; (b) Umbenhauer, D. R.; Lankas, G. R.; Pippert, T. R.; Wise, L. D.; Cartwright, M. E.; Hall, S. J.; Beare, C. M. Toxicol. Appl. Pharmacol. 1997, 146, 88.
- 24. Male CF-1 Abcb1a (-/-) mice (Charles River, Japan) were used. After 15 h starvation, each mouse was administered vehicle (0.5% methylcellulose solution) or **3d** (30 mg/kg) intraperitoneally at a volume of 10 mL/kg. After the administration, mice were given palatable diet (moderately-high fat (MHF) diet, Oriental BioService Kanto, Japan) to accelerate the feeding response. Food consumption was measured 30 min after access to food. Data were expressed as the mean ± SE. *n* = 7–8 mice/group (ANOVA followed by Dunnett's test).